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Theory of lattice strain in a polycrystalline aggregate under deviatoric stress is extended to include the
influence of ongoing plastic deformation. When deviatoric stress is applied to a polycrystalline material at high
temperatures �or above the yield stress�, applied macroscopic stress is redistributed to individual grains by
plastic deformation according to their orientations with respect to the macroscopic stress and plastic anisotropy
of a given crystal. This microstress causes elastic deformation of individual grains that can be measured by
x-ray diffraction. Consequently, the observed lattice strain depends on two material properties, viscosity �plas-
ticity� and elastic compliance as well as the applied macroscopic stress and the stress-strain distribution among
various grains. The influence of plastic deformation on lattice strain is analyzed using an anisotropic and
nonlinear power-law constitutive relationship. In this model, the dependence of inferred macroscopic stress on
the crystallographic orientation of diffraction plane �hkl� comes from elastic and plastic anisotropy of a crystal.
In many materials, plastic anisotropy dominates over elastic anisotropy. This explains the observed large
dependence of inferred stress on the diffraction plane and means that the determination of elastic anisotropy is
difficult when plastic deformation occurs with anisotropic plasticity. When elastic anisotropy is known, plastic
anisotropy of single crystal and/or stress-strain distribution in a deformed polycrystal can be determined from
radial x-ray diffraction using the present model. Some examples are presented using the data on MgO.
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I. INTRODUCTION

X-ray diffraction from a polycrystalline sample at various
orientations, called radial x-ray diffraction, contains rich in-
formation as to the orientation-dependent properties of con-
stituent crystals and/or the stress acting on the bulk of the
sample. This technique is particularly useful under high-
pressure conditions where it is difficult to study mechanical
properties using other techniques. Consequently, radial x-ray
diffraction technique has been applied to study plastic
properties1–5 or elastic properties6,7 under high-pressure con-
ditions. However, underlying physical principles to interpret
such data have not been clearly formulated and several prob-
lems have been recognized in the application of this tech-
nique. For example, the results by Mao et al.6 showed vastly
different elastic anisotropy of hcp iron calculated from the
results of first-principles studies.8–10 Also in many cases the
magnitude of dependence of inferred stress on the lattice
plane �hkl� far exceeds the values expected from Singh’s
model,3,4 and the estimate of macroscopic strength of a
sample from these data contains large uncertainties.

When a polycrystalline material is placed under a nonhy-
drostatic macroscopic stress, nonhydrostatic stress develops
at each grain, leading to the elastic distortion of lattice spac-
ings that depends on the applied stress and elastic compli-
ance. Singh11 developed a model of lattice strain in a poly-
crystalline aggregate caused by an applied macroscopic
stress. This model has been used to infer either macroscopic
stress and hence plastic properties or elastic constants from
x-ray diffraction. However, recent studies have revealed
some fundamental issues in such an exercise. The estimate of
elastic anisotropy from such a method contains a systematic
bias when a large plastic deformation occurs.12

These observations suggest that some important physics is
missing in the model by Singh11 and Uchida et al.13 When a

polycrystalline material is under a nonhydrostatic macro-
scopic stress, then nonhydrostatic stress develops at each
grain �I call it microscopic stress� that deforms individual
grain. Deformation of each grain occurs both elastically and
plastically but x-ray diffraction captures only elastic part
through the change in the distance between lattice planes.
The stress acting on each grain �microscopic stress� causes
the strain in individual grains �microscopic strain� and its
magnitude depends on the elastic constants and the micro-
scopic stress. When elastic constants are known then the mi-
croscopic stress can be calculated from the measured lattice
strain �or vice versa�. However, in order to calculate the mac-
roscopic stress from microscopic stress, one needs also to
know the relationship between macroscopic stress and mi-
croscopic stress.

As will be shown in the following, the model by Singh11

is incomplete in that his model does not fully take into ac-
count the role of plastic deformation to distribute the stress
acting on individual grains. Consequently, the conversion
factor to translate lattice strain to macroscopic stress involves
only elastic compliance tensor and hence, in this model, the
variation in inferred stress with the lattice plane �i.e., �d

d � is
controlled only by the anisotropy of elastic compliance.
When the influence of plastic deformation is included, the
conversion factor includes not only the elastic compliance
tensor but also the viscosity tensor. Plastic anisotropy is usu-
ally larger than elastic anisotropy and consequently the varia-
tion in inferred stress with the lattice plane �i.e., �hkl�� can be
larger if the influence of plastic deformation is important.

Therefore, the influence of plastic deformation needs to
be included in the analysis of experimental data of radial
x-ray diffraction. However, previous studies to incorporate
the influence of plastic deformation are all through numerical
modeling using some form of self-consistent model.3,4,14,15 In
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addition to the fundamental limitations of self-consistent
model to explain deformation of a polycrystal with large
contrast in mechanical properties �e.g., Milton16�, it is not
easy to obtain physical essence by numerical modeling. In
addition, in many cases of such modeling, plastic properties
are parametrized in terms of yield stress �critical resolved
shear stress� that is independent of strain rate. Such a de-
scription is valid only for low-temperature plasticity but not
for high-temperature plasticity. The purpose of this paper is
to formulate a theory of lattice strain in a polycrystalline
aggregate caused by the applied macroscopic stress including
the role of plastic deformation using a power-law rheology
that is appropriate for high-temperature behavior. This theory
not only explains the observed large variation in inferred
stress with the diffraction plane �hkl� but also provides a way
to constrain plastic anisotropy of individual crystal from ob-
served dependence of stress with the lattice plane �i.e.,
�hkl��. In this paper, I will present a general formulation and
apply it to a simple case of cubic crystal such as MgO.

II. THEORY

In order to extract useful information from measured lat-
tice strain, we need to understand the relationship between
the lattice strain and the macroscopic stress, �ij, and physical
properties of a given material. The lattice strain, �d

d , that one
measures using radial x-ray diffraction is the elastic strain
caused by the stress acting on individual grains. In order to
distinguish this stress from the applied stress, I will call this
as microscopic stress, �ij, and the applied stress as macro-
scopic stress, �ij. Consequently, the lattice strain depends on
�i� the applied �macroscopic� stress, �ii� the plastic anisotropy
that controls the distribution of microscopic stress for a given
macroscopic stress, and �iii� the elastic compliance of a given
material.

In order to calculate the lattice strain of a given crystallo-
graphic plane �hkl� in a plastically deforming polycrystalline
material for a given orientation of diffracted x ray, I analyze
the deformation of individual grain in two steps. First, I will
calculate the microscopic stress caused by macroscopically
imposed stress. The microscopic stress in individual grains
depends on plastic anisotropy and the stress-strain distribu-
tion. Since there is no exact solution for the stress-strain
distribution in plastically deforming polycrystals,16 I will
consider two cases: homogeneous stress �Sachs model� and
homogeneous strain �Taylor model�. Given this microscopic
stress, elastic strain in individual grains can be calculated as
a function of elastic constants and the orientation of the crys-
tal. Again, elastic deformation of a crystal embedded in a
polycrystalline material depends on the stress-strain distribu-
tion. It is this elastic strain of individual grains that is mea-
sured by the x-ray diffraction but the elastic strain in the
individual grains is caused by the microscopic stress that
depends on the plastic anisotropy. Therefore the analysis of
radial x-ray diffraction needs to include the influence of both
elastic and plastic deformation.

Singh11 calculated the lattice strain, �d
d , for a given mac-

roscopic stress. The x-ray diffraction by the �hkl� plane oc-
curs by crystals that have orientations such that the normal to

�hkl� is in the plane that is nearly normal to the incident x
ray. If one chooses a particular 2� for diffraction, the dif-
fracted beam will define a cone and the diffracted beam can
be captured by a detector whose position is at an angle �
measured from some reference direction of the sample coor-
dinate �see Fig. 1�. Therefore the calculation of lattice strain
involves the calculation of �d

d for a range of angle � corre-
sponding to the applied macroscopic stress. The process that
Singh11 and Uchida et al.13 followed is �i� to calculate the
stress acting on each grain caused by the macroscopic stress
from which x-ray diffraction occurs and �ii� to calculate the
lattice strain for a given microscopic stress. However, the
calculation of the microscopic stress caused by the macro-
scopic stress in Singh’s model involves only the coordination
transformations �from macroscopic to diffraction, and from
diffraction to sample coordinate; see Fig. 2�. Hence the con-
version factor in his model involves only the geometrical
parameters, i.e., the diffraction angle, � and �hkl�. The mi-
croscopic stress �stress at each grain� for a given macro-
scopic stress �or strain rate� depends also on plastic aniso-
tropy: grains with unfavorable �favorable� orientation for
plastic flow will have higher �lower� stresses. Therefore, the
first step in this calculation should be to calculate the micro-
scopic stress �for a sample reference frame� corresponding to
a given macroscopic stress.

In a plastically deforming material, stress at an individual
grain depends on the plastic properties of that grain, the ori-
entation of the grain with respect to the applied stress and the
boundary condition. The boundary condition reflects the na-
ture of grain-grain interaction that cannot be exactly formu-
lated �see, e.g., Milton16�. To simplify the calculation, I pos-
tulate that the actual �microscopic� stress is an average of
stress corresponding to two end members �homogeneous
stress and homogenous strain�, viz.,

�ij = � · �ij
S + �1 − �� · �ij

T , �1�

where � �1���0� is a parameter that characterizes the
stress-strain distribution for plastic deformation ��=1 for ho-
mogeneous stress �Sachs� model, �=0 for homogeneous
strain �Taylor� model�, �ij

S is the stress for the Sachs model
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FIG. 1. �Color online� Geometry of radial x-ray diffraction. The
dependence of the change in lattice spacing dhkl on diffraction
angle, �, and diffraction plane, �hkl�, provides a useful information
on macroscopic stress, �ij, and/or other physical properties if the
relation between lattice strain and these parameters is known.
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�=�ij: macroscopic stress�, and �ij
T is the stress corresponding

to the Taylor model. Equation �1� is written in the sample
reference frame. For �ij

S , the results are identical to those by
Singh.

In order to treat plastic deformation, it is convenient to
separate volumetric and shear stress/strain. Thus, for a volu-
metric component, one has

�P = � · �P
S + �1 − �� · �P

T , �2�

where �P=
�11+�22+�33

3 �=P� is a compressional stress �pres-
sure�, and an equation similar to Eq. �1� is applied to shear
stress. Since x-ray diffraction experiments are usually con-
ducted for a long time compared to the time scale of micro-
scopic relaxation processes, I consider a fully relaxed state of
volumetric compression, i.e., �=1, then Eq. �2� is reduced to
the isothermal equation of state, viz.,

P = P�T,
�V

V
� , �3�

where T is the temperature and �V
V =	11+	22+	33 is the volu-

metric strain. This relation can be used to determine the pres-
sure when temperature is known. In the following, I will
focus on deviatoric strain and associated deviatoric stress.

The deviatoric �shear� stress is related to deviatoric
�shear� strain or deviatoric �shear� strain rate. When large
plastic deformation occurs, then the distribution of shear
stress is determined mostly by viscous flow, viz.,

�ij
T = 2
ijpqĖpq, �4a�

where Ėpq is the macroscopically imposed strain rate and

ijpq is the viscosity tensor �in the sample coordinate� that
depends on the plastic properties of the crystal and the ori-
entation of the crystal with respect to the applied stress. Plas-
tic deformation of a material often follows nonlinear relation
between the applied stress and strain rate called power-law
creep.17,18 The viscosity tensor for a material deformed by
the power-law creep may be written as �Appendix�

�ij
T = 2
̄ijpqII

Ė

1−n/2n
Ėpq, �4b�

where n is the stress exponent, 
̄ijpq is the �microscopic�
viscosity coefficient tensor for nonlinear rheology �unit is
Pa s1/n� that depends on the strain rate, and IIĖ is the second
invariant of the strain-rate tensor. The macroscopic strain

rate, Ėpq, and its second invariant, IIĖ, are known for a par-
ticular experimental setup.

Equations �4a� and �4b� may be cast into a matrix form
using the Voigt notation �e.g., Nye19�, viz.,

�i
T = 2
ijĖj �Voigt notation� , �5a�

and

�i
T = 2
̄ijIIĖ

1−n/2n
Ėj �Voigt notation� , �5b�

respectively.

Similarly, the macroscopic strain rate, Ėj, is related to the
macroscopic stress, �i, as

�i = 2H̄ijIIĖ

1−n/2n
Ėj �Voigt notation� , �6�

where H̄ij is the macroscopic viscosity coefficient. Inserting
Eq. �6� into Eq. �4�, I obtain

�i
T = 
̄ikH̄kj

−1� j � �ij� j �Voigt notation� , �7�

with

�ij � 
̄ikH̄kj
−1 �Voigt notation� , �8�

where H̄kj
−1 is the inverse of the macroscopic viscosity coef-

ficient matrix, H̄kj. Relation �7� relates the macroscopic stress
to the microscopic stress in the homogeneous strain model
�Taylor model�. This relation indicates that the microscopic

stress depends on microscopic �
̄ij� and macroscopic �H̄ij�
plastic anisotropy. Macroscopic plastic anisotropy is due to
the lattice-preferred orientation �LPO� and the plastic aniso-

tropy of individual crystals, and therefore anisotropy of H̄ij is
always weaker than that in 
̄ij. In a case where macroscopic
anisotropy is much smaller than anisotropy of a crystal
�weak LPO�, Eq. �7� becomes

�ij
T �


̄ijpq

	H̄

�pq, �9�

where 	H̄
 is the isotropic macroscopic viscosity coefficient
of the sample.
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FIG. 2. �Color online� Definitions of three coordinate systems
�X, Y, and Z: sample coordinates; X�, Y�, and Z�: diffraction coor-
dinates; and X�, Y�, and Z�: crystal coordinates� and � and �hkl�.

THEORY OF LATTICE STRAIN IN A MATERIAL… PHYSICAL REVIEW B 79, 214106 �2009�

214106-3



Inserting Eq. �7� into Eq. �1�, I have

�ij = � · �ij + �1 − �� · �ijpq�pq. �10a�

In order to calculate lattice strain, it is useful to rewrite Eq.
�10a� in terms of the crystal coordinate, viz.,

�ij� = � · �ij� + �1 − �� · �ijpq� �pq� , �10b�

where � indicates that the quantity is written using the crys-
tal coordinate, quantities without any prime means that it is
written using the sample coordinate �for the definitions of
various coordinates see Fig. 2�.

Stress in this equation may be transformed to the stress in
the sample coordinate using the procedure described by
Singh11 and Uchida et al.,13 viz.,

�ij� = cip · cjq · �pq, �11�

where

cij = aikbkj , �12�

with

aij = �cos � − sin � cos � sin � sin �

sin � cos � cos � − cos � sin �

0 sin � cos �
� , �13�

where �� ,�� is defined in Fig. 2 and

bij = �
N

M
0

h

M

−
hk

NM

l

N

k

M

−
hl

NM
−

k

M

l

M

� , �14�

with N�
k2+ l2 , M �
h2+k2+ l2.
After transformation, the microscopic stress is expressed

in terms of the macroscopic stress ��ij�, viscosity coefficient
tensor of a crystal �
̄ijpq� �, viscosity coefficient tensor of a

sample �H̄ijpq�, and the index of lattice plane from which
diffraction occurs ��hkl�� and the orientation of that plane
with respect to the x-ray detector ���. Therefore in general,
one obtains a functional relationship between microstress
and these variables as

�ij� = �ij� ��,hkl�
̄ijpq� ,H̄ijpq;�ij;�� . �15�

Given the expression for stress in the crystal coordinate,
�ij� , one can calculate the strain in each crystal in a polycrys-
tal. Strain in a crystal embedded in a polycrystalline material
depends on the stress-strain distribution for elastic deforma-
tion and I use a simple formula,11,13

	ij� = 
 · 	ij�
R + �1 − 
� · 	ij�

V, �16�

where 
 represents the stress-strain distribution for elastic
deformation �
=1 for homogeneous stress, 
=0 for homo-
geneous strain�, 	ij�

R is the strain for homogeneous stress �Re-
uss model�, and 	ij�

V is the strain for homogeneous strain
�Voigt model�. As far as the stress is small, linear elasticity
works and hence,

	ij�
R,V = Sijpq�R,V�pq� , �17�

where Sijpq�R,V is the elastic compliance for the Reuss or Voigt
state �in the crystal coordinate�. Given 	ij� , we can calculate
the lattice strain, 	hkl� �strain normal to the diffraction plane�,
by � � indicates that the quantity is written in terms of the
diffraction coordinate�

	hkl� = 	3� = 	ij� lilj = ��d

d
�hkl

, �18�

where li is the direction cosine between x3� and xi�. Note that
stress-strain distribution for elastic deformation can be dif-
ferent from that for plastic deformation, and therefore the
values of � and 
 can also be different. I finally obtain

��d

d
�hkl

= G��,hkl��ij;Sijpq� ,
̄ijpq� ,H̄ijpq;�,
� , �19a�

where G�� ,hkl ��ij ;Sijpq� , 
̄ijpq� , H̄ijpq ;� ,
� is a function of
known variables, �� ,hkl�, and unknown variables,

��ij ;Sijpq� , 
̄ijpq� , H̄ijpq ;� ,
�, where Sijpq� and 
̄ijpq� are the
properties of the crystal �elastic compliance and viscosity

coefficient�. Macroscopic viscosity coefficient tensor, H̄ijpq,
depends on the anisotropy of crystal plasticity and the LPO;
the latter may be determined from x-ray intensity or from the
orientation measurements of crystals in a sample. For sim-
plicity, I will consider a case of weak LPO and the influence
of LPO will not be included in the following analysis. In
such a case, Eq. �19a� is reduced to

��d

d �hkl

= G��,hkl��ij;Sijpq� ,

̄ijpq�

	H̄

;�,
� . �19b�

Equation �19b� contains three types of variables: the
angle, �, at which diffracted x ray is detected, the
macroscopic stress ��ij�, anisotropic physical properties

�Sijpq� ,

̄ijpq�

	H̄

�, and the parameters that characterize the stress-

strain distribution �� ,
�. X-ray diffraction measurements are
made for a finite number of independent �hkl� planes. Dif-
fracted x-ray beams are collected somewhat differently be-
tween white x-ray and monochromatic x-ray diffraction: for
a white x-ray, one uses fixed finite values of �, whereas for a
monochromatic x-ray, one uses continuous values of �.
However in both cases, the number of independent informa-
tion from the � dependence is finite because Eq. �19� con-
tains only a finite number of �sin � , cos ��.

It is seen from Eq. �19b� that the radial x-ray diffraction
data depend on various parameters and therefore in order to
obtain one �or a few� unknown parameter�s� one needs to
know other parameters. For example, in general the lattice
strain is proportional to stress, elastic compliance, and vis-

cosity coefficient, � �d
d �hkl� ��ij� · �Sijpq� � · �


̄ijpq�

	H̄

�, and hence,

one needs to know both elastic compliance and viscosity
anisotropy in order to determine the stress. As will be shown
below, in some cases, these unknowns including �� ,
� can
be determined separately using the fact that the dependence
of these unknowns on �� ;hkl� is different.
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Let us consider a case where elastic anisotropy is much
weaker than plastic anisotropy. This is a case for most mate-
rials where plastic anisotropy is much stronger than elastic
anisotropy when plastic deformation occurs by dislocation
motion.20 In such a case, the difference between Voigt and
Reuss models is small compared to plastic anisotropy, and I
will use the Voigt model for elastic deformation, viz.,

	ij� = 	ij�
V = Sijpq

V �pq� , �20�

where Sijpq
V is the elastic compliance for the Voigt average

�
=0� that is independent of �� ,hkl�. In this case, the de-
pendence of lattice strain on �hkl� is only through the depen-
dence of microscopic stress on �hkl�. Under this assumption,
only unknowns are the viscous anisotropy �
̄ijpq� �, the mac-
roscopic stress ��ij� and �, and a parameter to characterize
the stress-strain distribution in a plastically deforming aggre-
gate.

III. APPLICATIONS TO TRIAXIAL COMPRESION OF AN
AGGREGATE OF CUBIC CRYSTALS

In order to illustrate how the present theory is used to
analyze the data on radial x-ray diffraction, let us consider a
simple case: deformation of a polycrystalline aggregate made
of a cubic crystal deformed by triaxial compression. In this
case, there are only two independent viscosities �Appendix�,
and there is only one deviatoric stress component. Conse-
quently, Eq. �19� can be written in a compact form. Let us
consider, for simplicity, a case where elastic anisotropy is
much smaller than plastic anisotropy and the influence of
LPO is negligible. Under these conditions, the lattice strain
caused by the macroscopic stress essentially depends on
plastic and elastic anisotropy with the assumption of 
=0.
Relation �19b� is then written as

�d

d
= � · ��d

d
�S

+ �1 − �� · ��d

d
�T

, �21�

with

��d

d
�T

= t · f��� · S44� · 
I
� · ���hkl� · �A − B� −

A

3
�

= t · f��� · S44� · ���hkl� · �A · 
I
� − 
II

� � −
A

3

I

�� ,

�22a�

and

��d

d
�S

= t · f��� · S44� · ���hkl� · �A − 1� −
A

3
� , �22b�

where t=�3−�1, f���=1–3 cos2 �, A=
2�S11� −S12� �

S44�
, B=


̄II�


̄I�
,

��hkl�= h2k2+k2l2+h2l2

�h2+k2+l2�2 , and 
I,II
� =


̄I,II�

	H̄

. The parameter A repre-

sents the elastic anisotropy and the parameter B represents
the plastic anisotropy. Therefore

�d

d
= t · f��� · S44� · �C1 · ��hkl� + C2� , �23a�

with

C1 = �A
I
� − 
II

� � + ��A�1 − 
I
�� − �1 − 
II

� �� , �23b�

and

C2 = −
A

3
�
I

� + ��1 − 
I
��� . �23c�

These relations form the basis for interpreting the results
of radial x-ray diffraction in terms of physical properties of a
material. The procedure of interpreting experimental data
may be as follows. First, for each diffraction planes, �hkl�,
lattice strain should be measured as a function of orientation
of diffracted x ray ��� in order to separate the volumetric and
deviatoric strain components. The volumetric component of
strain is used to determine the pressure �for a given tempera-
ture�, and the deviatoric component is used to determine the
deviatoric stress and plastic properties. For triaxial compres-
sion, one needs at least two angles to determine the devia-
toric strain, say �=0 and �

2 .
Second, the relation between deviatoric lattice strain and

the index of diffraction plane, �hkl�, can be used to determine
various unknown parameters. Because the influence of dif-
fraction plane on lattice strain, �d

d , is expressed by a singe
term, ��hkl�, by a linear equation �Eq. �23a��, one can deter-
mine only two parameters from the observed deviatoric lat-
tice strain. In a case where all the material properties �i.e.,
elastic, compliance, and viscosity coefficients� are known,
then Eqs. �23a�–�23c� can be used to determine the macro-
scopic stress, t �i.e., macroscopic viscosity coefficient�, and a
parameter, �, much the same way as Funamori et al.1 In
other words, when microscopic viscosity coefficients are
known, relation �23� can be used to determine the macro-
scopic viscosity coefficient and the stress-strain distribution
in an aggregate.

However, in many cases plastic properties of the constitu-
ent crystal are unknown. In these cases, the relation �Eqs.
�23a�–�23c�� cannot be used to determine unknowns
uniquely because there are only two equations for four un-
knowns �t, �, 
I

�, and 
II
� �. However, some general conclu-

sions can be derived from Eqs. �23a�–�23c�. For example, the
lattice strain ratio for �hkl�= �111� and �200� is given by

X�111�
X�200�

=
1

A


II
� + ��1 − 
II

� �

I

� + ��1 − 
I
��

, �24�

where X�hkl� is the deviatoric lattice strain for the diffraction
plane �hkl� defined by Eq. �23a�. If stress distribution is ho-
mogeneous, i.e., �=1, then, X�111�

X�200� = 1
A �0.8. This is much

smaller than the observed value for MgO �at high stress�.3,21

Therefore I conclude that the stress distribution in deformed
MgO is highly heterogeneous under these experimental con-
ditions. Another extreme case is the homogeneous strain, i.e.,

�=0. In this case, A X�111�
X�200� =


II
�


I
� so that one can determine B�

=

II

�


I
� �, from observed � using �=B.
In a general case of intermediate stress-strain distribution

�1���0�, one has four unknowns �t, �, 
I
�, and 
II

� �, but
Eqs. �23b� and �23c� provide only two constraints, viz.,
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X�111� = −
1

3
t · S44� · �
II

� + ��1 − 
II
� �� . �25a�

X�200� = −
1

3
t · S44� · A · �
I

� + ��1 − 
I
��� . �25b�

An additional relation is a relation between macroscopic vis-
cosity and microscopic viscosity such as


I
� + 


II
*

2
= 1, �26a�

or

�
I
��−1 + �
II

� �−1

2
= 1. �26b�

Relation �26a� corresponds to homogeneous strain, whereas
relation �26b� corresponds to homogeneous stress.

When Eq. �26a� or Eq. �26b� is assumed, then we have
three relations and therefore, if one assumes �, one
can determine all other unknowns. To illustrate this proce-

dure, I have calculated B�=

II

�


I
� � for various values of �

and ��=A · X�111�
X�200� �. The results are shown in Fig. 3. Given

B�=

II

�


I
� �, one can then calculate 
I

� and 
II
� using the relation

�26a� or Eq. �26b�. Then the macroscopic stress �i.e., macro-
scopic viscosity� can be calculated using the relation �25a� or

Eq. �25b�. The relations between B�=

II

�


I
� � and ��=A · X�111�

X�200� �
using relation �26a� are valid for homogeneous strain �i.e.,
small �� and those using the relation in Eq. �26b� are valid
for homogeneous stress �i.e., large ��. However, Fig. 3
shows that the choice of relation �26a� or Eq. �26b� has only
a small effect on the calculated value of plastic anisotropy, B.
Therefore a more realistic case will be well bounded by these
two end-member cases. In both cases the plastic anisotropy,
B, corresponding to a given � is relatively insensitive to � as

far as � is small ��0.5� when � is not very large. However,
when � is large, then B is highly sensitive to �. This means
that when the stress-strain distribution is close to homoge-
neous strain �small ��, then the parameter � cannot be deter-
mined precisely but the parameter B �plastic anisotropy� is
well constrained. The opposite is true when � is large, i.e., a
case for nearly homogeneous stress. It is noted that an am-
biguity of a parameter � can be eliminated or reduced if the
stress/strain distribution of individual grains in a deformed
sample is measured.22,23

Let us compare the present theory with some ex-
perimental observations on MgO based on radial x-ray
diffraction. The best results to compare with the present
theory are those by Mei et al.24 where deformation ex-
periments were made at T �temperature�=1373–1573 K at
P �pressure�=1.5–10 GPa under which conditions defor-
mation likely occurs by the power-law dislocation creep.25

Mei et al.24 reported ��=A · X�111�
X�200� ��2.2 at T=1373 K and

P=2.4–3.1 GPa, �2.0 at T=1373 K and P=8.8 GPa,
�2.0 at T=1473 K and P=4.4 GPa, and �1.85 at T
=1573 K and P=1.5–4.0 GPa. In other words, ��1 and �
decreases with �homologous� temperature. ��=A · X�111�

X�200� ��1

means B�=

II

�


I
� ��1, and the latter is consistent with the

known property of MgO.26,27 Although some results are
available at lower temperatures,2,3 the results at lower tem-
peratures are difficult to interpret because of the large influ-
ence of work hardening.2 However, the general trend is simi-
lar, i.e., ��=A · X�111�

X�200� ��1, which can be interpreted by the
plastic anisotropy. In order to make a quantitative analysis, I
chose the results for experiments in which boron epoxy was
used as a pressure medium. Using their data, I calculated �
and compared these results with plastic anisotropy factor, B
�the parameter B is calculated from the experimental data by
Copley and Pask26�. The influence of pressure is included
assuming that the temperature dependence of plastic aniso-
tropy follows the homologous temperature scaling, i.e.,

B�exp��
Tm�P�

T �where � is a constant and Tm�P� is melting
temperature. I used melting temperature data from Zerr and
Boehler.28 Figure 4�a� shows the results. B and � correlate
well suggesting that the observed �hkl� dependence of stress,
�, is largely due to the plastic anisotropy of single crystals.
However, the values of B are systematically larger than
those of �. Using the results shown in Figs. 3 and 4�a�, I
calculated a parameter � and plotted it as a function of tem-
perature. Figure 4�b� shows that � increases with tempera-
ture; i.e., stress becomes more homogeneous at higher tem-
peratures.

IV. DISCUSSIONS

In his classical paper on the radial x-ray diffraction,
Singh11 did mention plastic deformation �p. 4279�. However,
the most important role of plastic deformation, i.e., the dis-
tribution of stress among individual grains was not included
in his model. Instead, Singh considered that stress causes
plastic deformation but it was assumed that at a certain
point a sample achieves mechanical equilibrium implying no
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FIG. 3. �Color online� The relation between a parameter char-
acterizing stress-strain distribution ��� and plastic anisotropy

�B�=

II

�


I
� �� for various values of ��=A · X�111�

X�200� � and the relation for
microscopic and macroscopic viscosity �Eq. �26a� or Eq. �26b��.
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continuing plastic deformation. Consequently, he considered
that the influence of plastic deformation can be included if
one allows a range of stress-strain distribution in elastically
deformed material. In other words, the macroscopic strain
rate is assumed to be zero, Ėij =0. Such would be the case of
a relaxed state of a Voigt model. However, under most high-
temperature conditions, a given material will continue to de-
form under deviatoric stress �Ėij�0�. Even in such a case,
microscopic elastic deformation �microscopic equilibrium�
also occurs in the constituent crystals. Such a model is called
a Maxwell model. The model considered in the present paper
corresponds to a Maxwell model.

Another limitation in a conventional approach3,11,14,15 is
that plastic deformation is considered to provide yielding and
the differential stress is interpreted as a yield stress �or criti-
cal resolved shear stress� that is independent of strain rate.
Critical resolved stress used in many self-consistent models
belongs to this category of description of plastic
deformation.17 However, under most high-temperature con-
ditions, the concept of yield stress �or critical resolved stress�
is not appropriate and the strength depends strongly on strain
rate. The power-law constitutive relationship used in this pa-
per is a more appropriate form of constitutive equation under
these conditions. In these cases, a sample is not in the me-
chanical equilibrium at the macroscopic scale, yet a sample
can achieve elastic equilibrium at the scale of individual
grains. X-ray diffraction captures this microscopic elastic
equilibrium.

A so-called self-consistent approach used to interpret the
results of radial x-ray diffraction3,14 assumes some type of
interaction among grains. This is equivalent to an assumption
of a particular value of � in my model. However, the choice
of this parameter is implicit in the self-consistent approach
and the validity of such a choice is not known. Also a self-
consistent approach does not explain a behavior of aggre-
gates when strength contrast is large.17,22

The above theory is quite general, but replies on some
assumptions. First, when deformation occurs at low tempera-
tures and/or low stresses, then plastic deformation is not sig-
nificant and the classical model by Singh11 will apply. In
fact, Weidner and Li21 showed that when the applied stress is
below the critical value, then the results of radial x-ray dif-
fraction are consistent with the model by Singh.11 The same
is true when deformation occurs by diffusion creep. Diffu-
sion in a cubic crystal is isotropic, and hence there will be no
plastic anisotropy in such a case and the results of radial
x-ray diffraction should agree with those of a classic theory.
Second, the assumption of a linear combination of the stress
corresponding to two extreme cases is a crude approxima-
tion. However, this relation allows us to infer the state of
stress-strain distribution and hence the macroscopic strength
of a plastically deforming material. Second, the nonlinear
flow law of form �4b� is also an approximate form. The
power-law constitutive relation is valid only under limited
conditions �at high temperature and low stress�. At low-
temperature and/or high-stress conditions, another form of
constitutive relation is more appropriate. Incorporation of
other flow law is straightforward as far as one parameter is
used to characterize the strength at a given condition. Third,
the influence of LPO is not discussed in any detail. This is
justified to a first-order approximation because the first-order
effect of LPO is to change the intensity of x-ray diffraction
but not the positions �angle or energy� of diffraction peaks. If
needed, the influence of LPO may be included in two steps
in this theory: one in averaging over �,29 and another in
converting imposed macroscopic strain field to macroscopic
stress field. The formula for lattice strain can be substantially
simplified when the influence of LPO is weak. For more
detailed discussion on the influence of LPO on lattice strain
see Merkel and Yagi.29 It is often argued that the discrepancy
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FIG. 4. �Color online� �a� A comparison of plastic anisotropy, B, with the observed values of �hkl� dependence of stress, �. �b� Parameter
� calculated from the observed values of � using the relation shown in Figs. 3 and 4�a� as a function of temperature �temperature for each
data is normalized to P=2.4 GPa� using the homologous temperature scaling.
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between the experimental6 and theoretical results8 on elastic
anisotropy is largely due to LPO.9,30 Although LPO has some
influence on the calculated elastic anisotropy from radial
x-ray diffraction, such an effect is indirect and small. The
effect of plastic anisotropy is direct and in most cases much
larger and more important.

The present theory provides a clear explanation of the
observed results of radial x-ray diffraction at high pressures
�and temperatures� that are inconsistent with a classic theory
of Singh.11 In addition, the present theory makes it possible
to obtain some constraints on plastic anisotropy of single
crystals or stress-strain distribution from the results of radial
x-ray diffraction of polycrystalline samples. In case of MgO
where some results of radial x-ray diffraction are available, I
show that the observed large �hkl� dependence of stress can
be attributed to large plastic anisotropy, and if the known
plastic anisotropy is used then one can infer the variation in
stress distribution with temperature. The results show that
stress becomes more homogeneous as temperature increases,
which is presumably due to the enhanced plastic accommo-
dation. Such results have important bearing on the under-
standing of fabric �texture� development in and the strength
of deformed polycrystals.31 However, there are large uncer-
tainties in the experimental data on radial x-ray diffraction.
For example, for MgO, diffraction from �111� is weaker than
that that from �200�, and consequently, errors are larger for
�111� than for �200�. This causes some uncertainties for �.
Mei et al.24 used boron epoxy pressure medium below 4.4
GPa and mullite above 8.8 GPa. I did not compare results
with different pressure media because there is a potential
bias caused by the difference in pressure media through the
systematic difference in water content in samples. Conse-
quently, the pressure range explored is limited and the influ-
ence of pressure on plastic anisotropy and/or stress-strain
distribution in a deformed polycrystal of MgO is not well
characterized by the present study. Because the relative easi-
ness of two slip systems in MgO �B1 structure� is due largely
to the influence of electrostatic energy that changes with
pressure,32 one expects that plastic anisotropy in materials
with B1 structure will change with pressure. With higher
quality data coming from improved x-ray diffraction mea-
surements, the present theory will help us understand the
variation in plastic anisotropy and the stress-strain distribu-
tion with pressure �and temperature�. The expansion of the
present theory to more general stress geometries and/or to
other crystal structures is straightforward and will be dis-
cussed in the next papers.
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APPENDIX: FORMULATION OF NONLINEAR FLOW
LAW AND PLASTIC ANISOTROPY

Plastic deformation of a crystal often occurs by the mo-
tion of crystal dislocations. In most cases, the rate of

deformation is a nonlinear function of stress. When the stress
level is modest and temperature is a large fraction of the
melting temperature ��0.5 T /Tm, Tm: melting temperature�,
strain rate is proportional to some power of stress. Let us
considera material that deforms at steady state following a
power-law rheology. Because both stress and strain rate are
second-rank tensors, the constitutive relation connecting
them must involve a fourth-rank tensor. I choose the follow-
ing formula that is a generalization of the well-known Levy–
von Mises formula for anisotropic plasticity,33

�ij = 2
̄ijpqII	̇
1−n/2n	̇pq, �A1�

where 
̄ijpq is the anisotropic viscosity tensor �unit is Pa s1/n�
and II	̇ is the second invariant of strain rate. I choose the
second invariant of strain rate rather than stress because
strain rate is known for most of the experimental setup and
stress is the unknown variable. With an abbreviated �Voigt�
notation, this equation becomes

�i = 2
̄ijII	̇
1−n/2n	̇ j �Voigt notation� . �A2�

Let us examine how the viscosity matrix, 
̄ijpq �or 
̄ij in
the Voigt notation�, is related to the flow laws of various slip
systems. To do this, I assume that the viscosity tensor is
written in the crystal reference frame. For crystals with
orthotropic symmetry �cubic, tetragonal, hexagonal, and
orthorhombic�, Eq. �A2� is given by

�
�1�

�2�

�3�

�4�

�5�

�6�

� = 2II	̇�
1−n/2n�


̄11� 
̄12� 
̄13� 0 0 0


̄12� 
̄22� 
̄23� 0 0 0


̄13� 
̄23� 
̄33� 0 0 0

0 0 0 
̄44� 0 0

0 0 0 0 
̄55� 0

0 0 0 0 0 
̄66�

�
��

	̇1�

	̇2�

	̇3�

	̇4�

	̇5�

	̇6�

� . �A3�

Let us consider a cubic crystal such as MgO. MgO be-
longs to a B1-type structure �NaCl-type structure� in which

two slip systems are identified: 	110
�001� and 	110
�11̄0�.
These two sets of slip systems provide five independent
strain components so that a polycrystalline aggregate can
deform homogeneously using these two slip systems. For a
cubic system, there will be three independent viscosities,
viz.,
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�
�1�

�2�

�3�

�4�

�5�

�6�

� = 2II	̇�
1−n/2n�


̄11� 
̄12� 
̄12� 0 0 0


̄12� 
̄11� 
̄12� 0 0 0


̄12� 
̄12� 
̄11� 0 0 0

0 0 0 
̄44� 0 0

0 0 0 0 
̄44� 0

0 0 0 0 0 
̄44�

�
��

	̇1�

	̇2�

	̇3�

	̇4�

	̇5�

	̇6�

� . �A4�

When one uses the fact that there is no volumetric strain for

ductile deformation, this leads to a five-component expres-
sion of stress-strain rate relationship, viz.,

�
�1�−�2�

2

�2�−�3�

2

�4�

�5�

�6�

� = 2II	̇�
1−n/2n�


̄I� 0 0 0 0

0 
̄I� 0 0 0

0 0 
̄II� 0 0

0 0 0 
̄II� 0

0 0 0 0 
̄II�
��

	̇1� − 	̇2�

	̇2� − 	̇3�

	̇4�

	̇5�

	̇6�
�

�A5�

with 
̄I��

̄11� −
̄12�

2 and 
̄II� � 
̄44� . For a material with the B1
�NaCl� structure, 
̄I� represents the viscosity corresponding
to the 	110
�11̄0� slip system, and 
̄II� �
2323� to the
	110
�001� slip system. In MgO, 
̄II� is a high-T slip system
and 
̄I� is a low-T slip system.27 The viscosity coefficients
corresponding to other slip systems such as 	11̄0
�111� can
be written by a combination of 
̄I� and 
̄II� .
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